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Research Article

The Möbius Phenomenon in Generalized Möbius-Listing  
Bodies with Cross Sections of Odd and Even Polygons

J. Gielis1,*, , I. Tavkhelidze2

1Department of Biosciences Engineering, University of Antwerp, Belgium
2Faculty of Exact and Natural Sciences, Tbilisi State University, University Street 13, Tbilisi 0186, Georgia

1.  INTRODUCTION

1.1. � Generalized Möbius-Listing Bodies  
and Surfaces

Möbius bands are icons of mathematics, defined by a line swept 
along a circular path, but with a twist of 180° before connect-
ing with the original line. Generalized Möbius-Listing GMLn

m  
surfaces and bodies are a generalization of Möbius bands and 
the Möbius phenomenon of one sided surfaces [1]. Generalized 
Möbius-Listing GMLn

m  surfaces and bodies are toroidal struc-
tures obtained from cylinders whose cross sections have rotational 
symmetry, e.g. regular polygons, and with the centers of all cross 
sections forming the basic line of the cylinder (Figure 1 left). The 
toroidal structure results from joining the two ends of the cylinder 
after n twists of the cylinder around the basic line, with both m 
and n positive integers.

GMLn
m  bodies and surfaces are closed toroidal structures but are a 

subset of Generalized Twisting and Rotating bodies GTRn
m  bodies 

and surfaces.

Definition 1: Generalized twisting and rotating bodies GTRn
m  

bodies and surfaces are defined by (1):
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X, Y, Z, t is the ordinary notation for space and time coordinates 
and t, y, q are local coordinates where t ∈ [−t *,t *], with 0 < t ;  
y ∈ [0; 2p] and J ∈ [0; 2p h], with .hÎ

The functions T1,2,3(t), R(y, q, t), p(t, y, q, t), M(t) and Q(q, t), 
as well as parameter m (defining twisting around the basic line), 
define simple movements. With these analytic representations 
complex movements can be studied and decomposed into simple 
movements; this line of research goes back to Gaspar Monge [2].

Definition 2: Generalized Möbius-Listing bodies GMLn
m  are 

defined by (2) and (3):
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or, alternatively,
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In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, it is well known that the Möbius 
phenomenon, whereby the cutting process yields only one body, occurs only in even polygons with an even number of vertices 
and sides, and only in the specific when the knife cuts through the center of the polygon. This knife cuts from vertex to vertex, 
vertex to side or side to side, cutting exactly two points on the boundary of the polygon. This is called a chordal knife, in 
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finding is the reduction of a problem in 3D (with internal geometry) to a planar problem and the concomitant reduction of the 
analytic representation with multiple parameters to a few only. The shape of the cross section and number of twisting in the 3D 
representation suffice and reduce the problem to cutting of regular polygons and cyclic permutations.
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Figure 1 | Left: Identification of vertices  iA¢ or iT ¢ , with twists leading to torus GML .n
m Right: GTR body.
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In the notation GML ,n
m m relates to the symmetry of the cross  

section, and n to the number of twists relative to m. The choice 
of regular polygons and of straight knives can be general-
ized to any convex or concave m-symmetrical cross section. 
For the functions R(q ) and p(t, y) (path and cross section of 
the GML ,n

m respectively) Gielis transformations defined by (4) 
can be used [2–8]. They provide for a unifying description for 
a wide range of natural and abstract shapes, including regular 
polygons [9,10]:
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The advantage of these analytic representation is the knowledge  
of the domain using a limited set of parameters to describe com-
plex movements [2]. Furthermore, a wide variety of classical prob-
lems in topology, based on algorithmic approaches (e.g. folding and 
gluing) can now be studied using analytic geometry. Indeed, these 
analytic representations or equations substitute for recipes or algo-
rithms to generate Möbius strips, tori, Klein bottles, canal surfaces 
or more complex shapes, or recipes for studying combinatorial 
problems, especially when these domains have internal symmetry 
whereby differentiated zones and sectors result when GMLn

m  sur-
faces or bodies are cut.

1.2. � Cutting of Möbius-Listing Bodies and 
the Reduction to a Planar Problem

In case the cylinder is a strip and it is given a half twist (180°) before 
joining, the classic Möbius band results, a 1

2GML  surface. The half 

twist for 1.
2
m n= = The results of cutting 2GMLn  surfaces based on 

a strip, have been classified in full generality for any integer value 
of n (for all multiples of n or 180°), for all cutting lines or strips 
(containing the basic line or not) of and for any number of cuttings 
[1]. Results have been reported for cutting GML with particular 
symmetries [2–7] and the general case was solved in Gielis and 
Tavkhelidze [8].

Definition 3: Cutting is performed with (1) a straight knife, which 
(2) cuts perpendicular to the polygonal cross section of the GMLn

m  
surfaces and bodies, and (3) the knife cuts the m-polygon boundary 
exactly in two points or two times (depending on the thickness of 
the knife). For (3) there are three possibilities: the cut of the polygon 
can be from a vertex to a vertex VV, from a vertex to a side or edge 
VS, or from side to side SS (=edge to edge). The precise orientation 
of this knife (and the positions where it cuts the boundary) is main-
tained during the complete cutting process, until the knife returns 
to its starting position, and the cutting is completed. The point of 
the knife traces out a toroidal line along the GMLn

m  body or surface.

Depending on the number of twists, a number of independent 
bodies results, that is related to the divisors of m. Cutting of GMLn

m  
surfaces and bodies along the toroidal structure has unveiled a 
close link with the study of knots and links, and with the coloring 
of surfaces. Figure 2 gives one example of a SS-cut in a pentagon. 
Table 1 in Supplementary information gives the results for cutting 

4GMLn  and 5GML  n  for different values of n.

Alternatively, one can also fix the knife and move the GMLn
m  sur-

face or body through the knife. The cutting process of the three  
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Figure 3 | Cutting and octagon with dm knife.

dimensional GMLn
m  bodies can then be related one-to-one to 

plane geometry, and the 3D problem becomes a planar one. Now, 
the dm knife is a line of infinite length (1), rotated m times or a 
divisor thereof.

Definition 4: The analytic definition of d-knife (1) is a construc-
tion with straight lines, whereby the number of straight lines is 
either m or one of its divisors:

	 

p p
a a d

p p
a

æ ö æ ö+ + + + =ç ÷ ç ÷è ø è ø

= - - £ £

2 2
sin cos  0, 

 0, 1 , ..., 1; ,

i ii x i y
m m

i m
m m

� (5) 

with a  the rotation parameter, and d the translation parameter of 
this infinite line [8,11,12].

Indeed, with the analytical definition of the geometrical dm knife 
[11] all possible cuttings of regular polygons can be studied with 
the number of blades on the knife either m or a divisor of m. This 
dm knife with m blades cuts from vertex to vertex, vertex to side 
or side to side, with each blade cutting exactly two points on the 
boundary of the polygon.

In the case m = 8 the dm = m knife has 8 blades, but for the octagon 
one can also have one-bladed, two-bladed and four-bladed knives. 
In Figure 3 the results of cutting an octagon with the dm=8 knife with 
eight blades are shown. In the left figure one observes that dm cuts 
from vertex to the opposite vertex, but the analytical definition of 
the knife allows for a rotation resulting in the side to side cuts in 
Figure 3 (right). A translation or a combination of translation and 
rotation, resulting in vertex-to-vertex, vertex-to-side and side-to-
side cuts is also possible (Figure 3, all other figures). This dm knife 
can cut from vertex to vertex, vertex to side or side to side, cutting 
exactly two points on the boundary of the polygon, and if m is an 
even number, then always some values of n exist for the Möbius 
phenomenon of the strip is realized.

Remark 1: It is noted that in the case m = 8 and the knife passing 
through the centre one counts only four chordal knives, but that is 
because the chordal knives overlap two by two.

The Annex in Gielis and Tavkhelidze [8] shows all possible cuts for 
 m = 6,…,10. These methods are intimately linked to combina-
torial problems, for example the Euler problems of drawing non- 
dissecting diagonals in polygons. Another combinatorial problem 
is the number of intersections of diagonals in the interior of regular 
n-gon. In the three left figures of Figure 3 the process of cutting 
from vertex to vertex is shown for an octagon. When these three 
figures are combined, one can compute the number of intersections 
of diagonals in the interior of regular n-gon (OEIS A006561 [13]). 
Indeed, Figure 3 is a dissection of this problem for the octagon into 
three, namely cuts with chordal dm knife from V1→V5  from V1→V4 
and from V1→V3, using the analytic definition of knives (5), and 
rotation and translation of the knife. Diagonal cutting problems 
are vertex to vertex, but our methods can also handle VS and SS  
cuttings or drawing lines.

1.3. � The Occurrence of the Möbius  
Phenomenon

It is noted that the solution of the problem by a reduction of 
dimensions, is also reflected in the reduction of parameters in 
the analytic expressions: only the cross section p(t, y) and the 
twisting parameter n, are involved. With this reduction it was 
found that the Möbius phenomenon, whereby the cutting process 
yields only a single and “one-sided” body, similar to the origi-
nal Möbius strip or ribbon, occurs only in even polygons with an 
even number of vertices and sides and only in the specific case 
when the knife cuts through the center of the polygon (Figure 3 
left and right).

This means that after a full cutting of the GMLn
m  body, only one 

body results, which displays the Möbius phenomenon of one-sided 

Figure 2 | (a) A pentagonal 5GMLn  body with four different bodies after cutting, each body indicated by a different color. (b) One of the resulting 
structures after cutting, forming a Link-4 structure with the three other resulting bodies.

a b



4	 J. Gielis and I. Tavkhelidze / Growth and Form 2(1) 1–10

bodies (in Figure 3, different colors in one shape indicate different 
bodies after cutting, so in the figures left and right we only have 
one body). In the case of GMLn

m
surfaces, this cutting results in 1 

ribbon which is one sided, and in the case of GMLn
m  bodies this 

results in one single body displaying the Möbius phenomenon. In 
the case of 8GMLn  bodies for example, depending on how the cut is 
made, such bodies can be triangular (Figure 3 left) or quadrangular 
(kite-shaped; Figure 3 right).

Remark 2: In a classical Möbius band an arrow moving along  
the ribbon is reversed after one full rotation, and two rotations are 
necessary for the arrow to coincide with the original one. The phe-
nomenon after one rotation is often referred to as non-orientability. 
In terms of visualization: if one travels on one particular trajectory 
of such one-sided ribbons resulting from cutting GMLn

m  surfaces, 
this is similar to travelling along the classic Möbius strip. In the case 
of GMLn

m  bodies with Möbius phenomenon after cutting, travel-
ling along each of the sides of the triangular bodies is similar to 
traveling along the classic Möbius band.

For the necessary conditions for obtaining the Möbius phenome-
non after cutting GMLn

m  surfaces or bodies, we have the following:

1. � The number m has to be even (m = 2, 4, 6, …). The Möbius  
phenomenon never occurs when the polygon has an odd 
number of vertices and sides [6–8].

2.	 � The knife has m blades cutting all vertices with maximal  
length of the knife (i.e. from one vertex or side to the opposite 
one, then repeating this for every vertex).

3.	 � The dm knife has to cut through the center (cuts are either  
vertex to opposite vertex, or side to side through center of the 
polygon).

In investigating the conditions under which the Möbius phenome-
non could also occur when m is an odd number (m = 3, 5, 7, …), we 
prove the following:

Proposition 1: If the knife is a radial knife the Möbius phenomenon 
can occur both in odd and even polygons.

2.  FROM CHORDAL TO RADIAL KNIVES

For a hexagon (Figure 4), one can visualize the m knives and 
their rotation for a d1 knife cutting from vertex 1 to 4 and for 
dm knife for all vertices. A translated knife is shown for d2. The 
rotated knives on the right show the orientation of the knife 
for every case when it cuts GMLn

m  bodies or surfaces, with  
n = m twists. The point of the arrow coincides with the toroi-
dal lines on the twisted GMLn

m  bodies or surfaces every 60°. 
The original dm knife is called a chordal knife, in connection 
to the chord cutting a circle. The symbol d refers to diagonal 
cutting of polygons, but chordal or dm knife is more general 
and is related directly to the classical trigonometric functions. 
A chord divides a circle (or polygon) into two distinct pieces 
and defines the sine function (the chord is 2 sin a, or AB in 
Figure 5a), and by virtue of the Pythagorean theorem also the 
cosine function (OC). Figure 4 | Chordal knife with 1, 2 and 6 blades.

Figure 5 | (a) Classical trigonometric functions with the radius OA as radial knife and the line AB as chordal knife. (b) Rotating and zooming the yellow 
knife allows for the infinite scaling of the pentagon and pentagram.

a b
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Figure 6 | Left: drc radial knife originating at the center (d1). The other rotated arrows indicated the position of the radial knife when traveling around a 
6
6GML  in one rotation.

Figure 7 | Plain, quarter and rift sawing of logs.

In Figure 5a the line OF corresponds to half the knife  d1 in Figure 4. 
For this chordal knife in vertical direction and going through the 
center the chord is maximal; the sine equals 1 and the cosine equals 
zero. The line AB on the other hand corresponds to the translated 
knife in the case of knife d2 in Figure 4.

In Figure 5b the relation of chords to polygons is shown, with the 
chord, the cosine/versine and sine/coversine as interesting func-
tions for the pentagon. On a circle five equally spaced points repre-
sent the vertices of a pentagon, which is constructed by connecting 
vertex Vi with vertex Vi+1, then vertex Vi+1 with Vi+2, until one returns 
at vertex Vi. The pentagram is constructed by connecting vertex Vi 
with vertex Vi+2 (Figure 5b).

In particular the adjacent chords of the pentagram (e.g. the yellow 
chord from V1 to V3 and the chord from V3 to V5) form two long and 
equal sides of a so-called golden triangle, an isosceles triangle with 

one angle 
π
5

 and two angles of p2 .
5

 Two non-consecutive sides of 

a pentagram (e.g. the chord from V1 to V3 and the chord from V2 
to V4) divide each other in mean and extreme ratio. Such construc-
tions are based on the classical compass and ruler construction, but 
polygons and polygrams can be constructed using dm knives (5). In 
these cases, the knives do not cut but are simply drawing tools.

If we now limit the knife in (5) to the half line OF or OE originat-
ing in the origin or center of the polygon, we obtain a radial knife 
(Figure 6). The name derives from radius versus the diameter in 
chordal knives. It cuts the polygon boundary only in one point.

Remark 3: Chordal and radial knives can belong to four different 
classes:

dcc chordal knife, through the center 0 (d1 and dm in Figure 4)

ccd  chordal knife, not through the center (d2 in Figure 4)

drc radial knife originating at the center (d1 in Figure 6)

rcd  radial knife not through the center 

Remark 4: A radial cut drc is also a half-line or ray, corresponding 
to the classical position vector, the most elementary and natural 
geometric object. This half-line can be translated using d or rotated 
using a, the translation and rotation parameters in (5), respectively. 
The drc or rcd  radial knives can also be moved via a combination 
of translation and rotation. The length of the drc is defined as the 
length from origin to the perimeter but can be extended or made 
shorter in the case of  rcd  knives as long as the knife cuts only one 
point on the surface.

The dm = dcc knives found their origin in cutting of bamboo culms 
lengthwise. Examples of both chordal and radial knives are found 

in the art of wood sawing, where due to the nature of wood, saws 
are more efficient than knives (Figure 7). Plain sawing corresponds 
to using chordal saws, whereas for quarter and rift sawing, the saw 
is a radial saw, with drc in the case of rift sawing and rcd  in the case 
of quarter sawing.

3. � USING RADIAL KNIVES FOR ODD AND 
EVEN POLYGONS

3.1.  The Conditions for Odd

Now, for proving that the radial knife also works when m is an 
odd number, the strategy is to look only at the simplest possi-
bility, which for m even is a cut through center or origin from a 
vertex to the opposite vertex, for all vertices (Figure 4 left and dm 
in Figure  4). In this case the planar geometrical configuration is 
m/2. In 3D GMLn

m  surfaces and bodies the Mobius phenomenon 
occurs when m is even and n/2. This is similar to the classic Möbius 
ribbon, which is a ribbon (a special case of a bilaterally symmetric 
shape with m = 2), twisted 180° before closing.

Because of the equivalence of the cutting of GMLn
m  surfaces and 

bodies and their representations in plane geometry as in Figure 3, 
the Möbius condition is achieved when in planar view all diagonals 
are used, in other words, when dm = m (Figure 4). This can obviously 
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also be achieved with radial knives, for example using all orienta-
tions of d1 knives in Figure 6.

It is then required to have the same situation in odd polygons. 
It is easy to see that this is very well possible with radial knives 
as shown in Figure 6, but five radial knives are needed orin gen-
eral, an amount of m knives, in contrast to an amount of m/2 of 
chordal knives as in dm in Figure 6. Generalizing radial knives drc 
for any symmetry, i.e. rotating the radial d1 knife to m positions  
as in Figure 8, results in m radial knives for m-regular polygons, 
irrespective of whether m is even or odd. In 3D GMLn

m  sur-
faces and bodies being cut with radial knives, this means that  
n = m twists are needed to connect both ends of the cylinder. Then 
the full cutting results in a single one-sided body, displaying the 
Möbius phenomenon, as stated in Proposition 1.

3.2.  Zones Created with Cutting

Using chordal knives in polygons results in different zones, the 
number and shapes of which are defined by the mode of cutting 
[12]. In Figure 3, some examples are shown for octagons. The dif-
ferent colors of the zones correspond to different bodies resulting 
from cutting 8GMLn  bodies with octagonal cross sections. In the 
case of chordal knives going through the origin, the number of  
separate sectors is 2m in the case of regular polygons when m is odd 
(Figure 9a for m = 9) but the number of separate sectors is m in the 
case of m-regular polygons when m is even (Figure 9b for m = 12). 
A full classification has been reported in [9].

In the case of radial knives however, the number of sectors is m, 
irrespective whether m is even or odd. In Figure 10 this is shown  
for cutting of equiangular triangles, with chordal knives through 
the origin from vertex to side (Figure 10a) or from side to side 
(Figure 10c). The number of different chordal knives m = 3 results 
in 2m = 6 sectors. If the cut is performed with three radial knives 
starting from the origin to vertex or two sides, one obtains exactly 
m sectors, for both odd and even polygons (Figure 10b and 10d). 
These sectors are a combination of one light blue and one dark 
blue sector in Figure 10.

This leads to three sectors which are congruent. Likewise, when 
the knives are rotated, always three congruent sectors are obtained. 
In the 3D 3GMLn  bodies with m = n twists, this results in one body 
after cutting, with Möbius phenomenon.

Congruence of sectors in the planar view is of primordial impor-
tance. These congruent sectors are independent of the number of 
cuts with the radial knife, but only in the case that the number of 
knives used is m, the Möbius phenomenon occurs. In other words, 
only in that case one body results after cutting the GML body. The 

cross section of this single body is the same along the whole GML 
body, due to the congruence of shapes.

With the demonstration in 3D in Subsection 3.1 and the congru-
ence of sectors in planar view, we then have [14]:

Theorem 1: If the knife cutting a GMLn
n  body is a radial knife with 

origin in the center of the polygonal cross sections and cuts all sides 
of the polygon with equal spacing the Möbius phenomenon will 
occur in both in odd and even polygons.

4. � RADIAL KNIVES AND LAMÉ’S  
SUPERCIRCLES

One constant result in the studies of cutting GMLn
m  surfaces and 

bodies has been that a cutting resulting in only one body dis-
playing the Möbius phenomenon, was limited to cases where m 
is an even number [5–7]. Using radial knives instead of chordal 
knives, it is shown that the Möbius phenomenon for GMLn

m  
bodies and surfaces can occur for m-regular polygons (or more 
generally with cross section with Cm rotational symmetry) when 
the knife crosses or originates in the center of the polygon. In the 
2D planar representation, this means that all the sectors remain 
connected, like in the 3D GML .n

m  In this paper it was assumed 
that the cross section of the GML remains constant along the 
whole structure. In a forthcoming paper it is shown that the 
cross section can be variable along the GML using the analytic 
representation. In fact, it will be shown that only one cross sec-
tion with rotational symmetrical shapes is enough to obtain the 
Möbius phenomenon.

A main strategy in our joint studies are the analytic representa-
tions. These are threefold: namely (1) the analytic representations 
of GMLn

m  bodies and surfaces, (2) the extension with Gielis curves 

Figure 8 | Five radial knives in a pentagon.

Figure 9 | Number of zones created with chordal knife with m blades 
through the origin and vertices for m = 9 (a) and m = 12 (b).

a b
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and transformations for cross sections and basic lines, and (3) the 
geometrical representation of the knives used for the study of cut-
ting GMLn

m  [8].

First, classic Möbius ribbons or strips where generalized to GMLn
m  

bodies and surfaces, whereby the strip is a special case of 2GMLn  
surface. This led to a full classification of cutting results for 2GMLn  
[1,2], not only for line cuts, but also for slit cuts, cutting aways 
“zones”. Results of cutting GMLn

m  surfaces and bodies with rota-
tional symmetry Cm = 3, 4, 5, 6 were also classified, and the general 
case was proven in Gielis and Tavkhelidze [8].

Second, the extension with Gielis transformations both for cross 
sections and the basic line of the toroidal structure, showed the 
generality of the results. They act as a transformation on curves or 
functions f(J ) and are a generalization of Gabriel Lamé’s superel-

lipses, defined by 
n n

nx y R
A B

=+  (6). To deal with different sym-

metries, the original expression was expressed in polar coordinates, 
and more degrees of freedom n1, n2, n3 were added. The symmetry 
parameter m folds the classic Cartesian coordinate system with 
four quadrants or sectors in a polar coordinate systems with m sec-
tors (Figure 11 show subcircles). Lamé’s Superellipses are defined 
by (4) for n1, n2, n3 = n; m = 4.

Expression (4) is a Pythagoras-compact expression, since for n1, n2, 
n3 = 2; A = B = 1; m = 4. in (4), the circle results. Parameter m can 
be an integer, a rational or irrational number, and (4) can define the 
cross section or the path, or both. By considering (4) as inequality, any 

point inside (and/or outside) the curve is defined precisely. Obviously, 
one can define shapes with boundary thickness (annuli or shells) in 
this way.

Remark 4: Any of the curves in Figure 12 may serve as boundaries 
or as knives [8]. Similary, straight lines in the Poincaré disk, the 
two-dimensional representation of the hyperbolic plane, can serve 
as knives.

Third, the results of cutting of GMLn
m  bodies could be related  

one-to-one with planar geometry, which led to the solution of the 
general case [7], and of the occurrence of the Möbius phenomenon 
for any integer or rational rotational symmetry, using the analytical 
definition of the dm knife (5) [8,11].

The results in this paper is that the same analytic representation 
of a dm knife but restricted to a half line resulting in radial knives, 
can be used to extend the possibility of having a single body with 
Möbius phenomenon after cutting GML bodies, with cross section 
regular polygons with both even and odd rotational symmetry. In 
this case, bodies (or polygons) are cut, but beyond cutting radial 
knives can also divide the plane into m sectors (chordal or diago-
nal knives divide the plane into m/2 sectors). By adding a direction 
and a length to these radial knives, this results in vectors. In other 
words, the same analytical definition adapted for radial knives, can 
describe knives, lines to separate sectors, drawing tools (e.g. draw-
ing diagonals in polygons) or vectors. If we would call the radial 
knife an rm knife, it is clear that it is directly related to radial dis-
tances, but now with m copies of one knife, spaced equally around 
the origin.

Figure 11 | Supercurves with all exponents n equal, but m = 1, 2, …, 8. All exponents n1 = n2 = n3 ≤ 2. Subcircles for m = 4, upper right.

Figure 10 | Vertex to side and side to side cuts through the origin in a triangle, with chordal (a and c) or radial knives (b and d).

a b c d
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Figure 12 | The rope model of the helical heart.

5.  CONCLUSION AND FUTURE WORK

5.1.  Biology, Physics and Geometry

The combination of chordal and radial knives and their analytic 
representation is directly related to classical trigonometric func-
tions and the position vector. Because of the combination with 
Gielis transformations, it is expected that many of the phenom-
ena described above, will find use in many fields of physics and  
biology [8].

One particular example of a shape that can directly be inter-
preted as a GMLn

m  structure is the helical heart of animals, a 
structure discovered by the Spanish cardiologist Dr. Torrent-
Guasp [15,16], described by a rope model. This is a GMLn

m  struc-
ture of which the basic line is a half-angle defined by m = 1/2 in 
(4), closing after 720°. The rope model of the heart (Figure 12) 
shows the beginning and the end of the myocardial band at the 
aorta and pulmonary artery (right), the circumferential wrap of 
the basal loop (center) and the helix with basic line a half-angle  
m = (left). This halfangle is directly related to the Möbius  
phenomenon.

It is remarkable that the connection of geometry to the real world 
can come in many ways. Classic processes in the bamboo and wood 
industries inspired the solution with chordal and radial knives in 
cutting GMLn

m  surfaces and bodies. This is not surprising, since 
this real world, in particular botany, was also the source of inspi-
ration for Gielis transformations [9]. As generalizations of Lamé 
curves, they turn out to be directly related to radial knives or draw-
ing tools, and integrate seamlessly with GMLn

m  bodies and sur-
faces. There are many connections to other fields of (differential) 
geometry, applied mathematics and science [10]).

Figure 13a shows a fibre bundle, and just as the Möbius band is 
a nontrival example of a fibre bundle, GMLn

m  can be thought of 
as models for fibre bundles, which, when twisted and cut, become 
one sided. It does not take a big leap of imagination to extend the 
notion of strings with the mathematical methods developed for 
GMLn

m  bodies and surfaces. Figure 13b shows a generalized cylin-
der, but now it is not directly connected, but via branes, very pop-
ular these days in physics. With the appropriate cutting tools and 
rules a 5GMLn  wormhole becomes a single body one displaying the 
Möbius phenomenon.

Finally, a beautiful consequence is that if one applies Lamé’s idea of 
generalizing circles and ellipses into supercircles and superellipses 
defined in a Cartesian system with four quadrants, onto a plane 
divided into m sectors, one readily sees that the Gielis formula (4) 
is exactly doing the same as the knives: division of the plane into m 
sectors. To each of these sectors then Lamé’s generalization of the 
Pythagorean Theorem can be applied. At the same time (4) adds 
more degrees of freedom and it is a continuous transformation. So 
we find a complete integration of Gielis Transformations and 
GMLn

m  bodies and surfaces.

Figure 13 | (a) 6GMLn  Fibre bundle [17]; (b) A 5GMLn  wormhole.

a

b
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5.2.  Gielis Transformations

The analytical representation of chordal and radial knives is directly 
related to classical trigonometric functions and the position vector. 
In this respect, Gielis transformations provide for a stretchable 
position vector [10]. In its original formulation it describes simple 
curves from [0, 2p] for integer m and from [0, k2p] for m = p/q 
with p and q relative prime, but different sectors of a curve or disk 
with different parameters can be defined with the appropriate tran-
sition functions, resulting in variational supercurves (Figure  14). 
Further generalizations, retaining the Pythagorean compact struc-
ture, include the use of different functions instead of trigonometric 
functions in the denominator of Equation (4) [20].

One can also make any number of shapes with the following ana-
lytical representation [21].
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where qi,j ∈ [−p, p] is the polar angle characterising the local coordi-
nates system; ,2 1 ,2 ,2 1 ,2  , , ,i j i j i j i jm m n n +

- - Î  (positive real numbers),  

,2 1 ,2 ,2 0, and i j i j i ja a b +
- Î  (strictly positive real numbers), and Ai,j, 

Bi,j are appropriate scaling factors; i = 1, ... p and j = 1, ... q and  
M = p×q being the total number of shapes. Additional rotation 
parameters can easily be introduced.

The unified geometrical description of GML surfaces and bodies 
and Gielis’ transformations allows for the exact description of 
irregular shapes using an analytical formula and this translate 

into the possibility of building flexible tools to carry out sensitive  
analyses to geometrical parameter variations.
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