From Pythagoras to Fourier and From Geometry to Nature

DOI: https://doi.org/10.55060/b.p2fg2n.chref.220215.019

References

Downloads:
283
Full-Text Views:
69

[1]
L.C. Andrews, Special Functions of Mathematics for Engineers, Oxford University Press, Oxford – New York, 1998.
[2]
P.L. Antonelli and T.J. Zastawniak, Preface: Lagrange Differential Geometry, Finsler Spaces and Noise Applied in Biology and Physics, Mathematical and Computer Modelling, Vol. 20, No. 4-5, 1994, pp. xi-xiii. DOI: https://doi.org/10.1016/0895-7177(94)90152-X
[3]
K.J. Arrow, H.B. Chenery, B.S. Minhas, and R.M. Solow, Capital-Labor Substitution and Economic Efficiency, The Review of Economics and Statistics, Vol. 43, 1961, pp. 225-250.
[4]
P. Bia, D. Caratelli, L. Mescia, and J. Gielis, Analysis and Synthesis of Supershaped Dielectric Lens Antennas, IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 2015, pp. 1497-1504. DOI: https://doi.org/10.1049/iet-map.2015.0091
[5]
R.N. Bracewell, The Life of Joseph Fourier, J.F. Price (editor), Fourier Techniques and Applications, Springer, Boston (MA), 1985.
[6]
P. Brandi and P.E. Ricci, Some Properties of the Pseudo-Chebyshev Polynomials of Half-Integer Degree, Tbilisi Mathematical Journal, Vol. 12, No. 4, 2019, pp. 111-121.
[7]
P. Brandi and A. Salvadori, A Magic Formula of Nature and Art, in APLIMAT 2018, 17th Conference on Applied Mathematics (Bratislava, Slovakia, 6–8 February 2018).
[8]
G. Van Brummelen, Jamshīd al-Kāshī: Calculating Genius, Mathematics in School, Vol. 27, No. 4, 1998, pp. 40-44. URL: http://www.jstor.org/stable/30211875
[9]
D. Caratelli, B. Germano, J. Gielis, M.X. He, P. Natalini, and P.E. Ricci, Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains, Lecture Notes of TICMI, Vol. 10, 2009, pp. 1-64.
[10]
D. Caratelli, B. Germano, M.X. He, and P.E. Ricci, Solution of the Dirichlet Problem for the Laplace Equation in a General Cylinder, Lecture Notes of TICMI, Vol. 10, 2009, pp. 20-34.
[11]
D. Caratelli, J. Gielis, P. Natalini, P.E. Ricci, and I. Tavkhelidze, The Robin Problem for the Helmholtz Equation in a Starlike Planar Domain, Georgian Mathematical Journal, Vol. 18, No. 3, 2011, pp. 465-479. DOI: https://doi.org/10.1515/gmj.2011.0031
[12]
D. Caratelli, J. Gielis, and P.E. Ricci, Fourier-Like Solution of the Dirichlet Problem for the Laplace Equation in k-Type Gielis Domains, Journal of Pure and Applied Mathematics: Advances and Applications, Vol. 5, No. 2, 2011, pp. 99-111.
[13]
D. Caratelli, J. Gielis, and P.E. Ricci, The Robin Problem for the Helmholtz Equation in a Three-Dimensional Starlike Domain, Applied Mathematics, Informatics and Mechanics, Vol. 21, No. 1, 2016, pp. 5-17.
[14]
D. Caratelli, J. Gielis, I. Tavkhelidze, and P.E. Ricci, Fourier-Hankel Solution of the Robin Problem for the Helmholtz Equation in Supershaped Annular Domains, Boundary Value Problems, Vol. 2013, 2013, pp. 253. DOI: https://doi.org/10.1186/1687-2770-2013-253
[15]
D. Caratelli, J. Gielis, I. Tavkhelidze, and P.E. Ricci, Spherical Harmonic Solution of the Robin Problem for the Helmholtz Equation in a Supershaped Shell, Applied Mathematics, Vol. 4, No. 1A, 2013, pp. 263-270. DOI: https://doi.org/10.4236/am.2013.41A040
[16]
D. Caratelli, P. Natalini, and P.E. Ricci, Fourier Solution of the Wave Equation for a Star-Like-Shaped Vibrating Membrane, Computers & Mathematics With Applications, Vol. 59, No. 1, 2010, pp. 176-184. DOI: https://doi.org/10.1016/j.camwa.2009.07.060
[17]
D. Caratelli, P. Natalini, P.E. Ricci, and A. Yarovoy, Fourier Solution of the 2D Neumann Problem for the Helmholtz Equation, Lecture Notes of Seminario Interdisciplinare di Matematica, Vol. 9, 2010, pp. 163-172.
[18]
D. Caratelli, P. Natalini, P.E. Ricci, and A. Yarovoy, The Neumann Problem for the Helmholtz Equation in a Starlike Planar Domain, Applied Mathematics and Computation, Vol. 216, No. 2, 2010, pp. 556-564. DOI: https://doi.org/10.1016/j.amc.2010.01.077
[19]
D. Caratelli and P.E. Ricci, The Dirichlet Problem for the Helmholtz Equation in a Starlike Domain, Lecture Notes of TICMI, Vol. 10, 2009, pp. 50-59.
[20]
D. Caratelli and P.E. Ricci, The Dirichlet Problem for the Laplace Equation in a Starlike Domain, Lecture Notes of TICMI, Vol. 10, 2009, pp. 35-49.
[21]
D. Caratelli, P.E. Ricci, and J. Gielis, The Robin Problem for the Laplace Equation in a Three-Dimensional Starlike Domain, Applied Mathematics and Computation, Vol. 218, No. 3, 2011, pp. 713-719. DOI: https://doi.org/10.1016/j.amc.2011.03.146
[22]
L. Carleson, On Convergence and Growth of Partial Sums of Fourier Series, Acta Mathematica, Vol. 116, 1966, pp. 135-157. DOI: https://doi.org/10.1007/BF02392815
[23]
C. Cesarano, S. Pinelas, and P.E. Ricci, The Third and Fourth Kind Pseudo-Chebyshev Polynomials of Half-Integer Degree, Symmetry, Vol. 11, No. 2, 2019, pp. 274. DOI: https://doi.org/10.3390/sym11020274
[24]
C. Cesarano and P.E. Ricci, Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme), Mathematics, Vol. 7, No. 2, 2019, pp. 180. DOI: https://doi.org/10.3390/math7020180
[25]
R. Chacon, Using Jacobian Elliptic Functions to Model Natural Shapes, International Journal of Bifurcation and Chaos, Vol. 22, No. 1, 2012, pp. 1230005. DOI: https://doi.org/10.1142/S0218127412300054
[26]
D. Chakrabarty, Non-Parametric Deprojection of Surface Brightness Profiles of Galaxies in Generalised Geometries, Astronomy and Astrophysics, Vol. 510, 2010, pp. A45. DOI: https://doi.org/10.1051/0004-6361/200912008
[27]
D. Chapman and J. Gielis, Gielis Transformations for the Audiovisual Database, 2021.
[28]
B.Y. Chen., Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Vol. 1, 1984. DOI: https://doi.org/10.1142/0065
[29]
B.Y. Chen, S. Decu, and L. Verstraelen, Notes on Isotropic Geometry of Production Models, Kragujevac Journal of Mathematics, Vol. 38, No. 1, 2014, pp. 23-33.
[30]
S.-S. Chern, Finsler Geometry Is Just Riemannian Geometry Without the Quadratic Restriction, Notices of the American Mathematical Society, Vol. 43, No. 9, 1996, pp. 959-963.
[31]
T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[32]
G. Dattoli, M. Migliorati, and P.E. Ricci, The Parabolic Trigonometric Functions and Chebyshev Radicals, 2007.
[33]
G. Dattoli, E. Di Palma, J. Gielis, and S. Licciardi, Parabolic Trigonometry, International Journal of Applied and Computational Mathematics, Vol. 6, No. 2, 2020, pp. 37. DOI: https://doi.org/10.1007/s40819-020-0789-6
[34]
R. Feynman, The Feynman Lectures on Physics, Vol. 2, 1963.
[35]
G. Fichera and L. De Vito, Funzioni Analitiche di Una Variabile Complessa, Veschi, Rome, 1964.
[36]
Y.D. Fougerolle, A. Gribok, S. Foufou, F. Truchetet, and M.A. Abidi, Boolean Operations With Implicit and Parametric Representation of Primitives Using R-Functions, IEEE Transactions on Visualization and Computer Graphics, Vol. 11, No. 5, 2005, pp. 529-539. DOI: https://doi.org/10.1109/TVCG.2005.72
[37]
M. Gardner, Piet Hein’s Superellipse, Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles from Scientific American, 1977, pp. 240-254.
[38]
W. Gautschi, On Mean Convergence of Extended Lagrange Interpolation, Journal of Computational and Applied Mathematics, Vol. 43, No. 1-2, 1992, pp. 19-35. DOI: https://doi.org/10.1016/0377-0427(92)90257-X
[39]
F. Gielis and J. Gielis, Gielis Transformations and Their Impact on Science and Technology, Technical Report on ResearchGate, 2021. DOI: https://doi.org/10.13140/RG.2.2.26896.64005/2
[40]
J. Gielis, A Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes, American Journal of Botany, Vol. 90, No. 3, 2003, pp. 333-338. DOI: https://doi.org/10.3732/ajb.90.3.333
[41]
J. Gielis, The Geometrical Beauty of Plants, Atlantis Press, Paris, 2017.
[42]
J. Gielis, De Uitvinding van de Cirkel, Geniaal Press, Antwerp, 2001.
[43]
J. Gielis, D. Caratelli, C.M.D.J. van Coevorden, and P.E. Ricci, The Common Descent of Biological Shape Description and Special Functions, International Conference on Differential & Difference Equations and Applications, Springer, Cham, 2017, pp. 119-131.
[44]
J. Gielis, D. Caratelli, Y. Fougerolle, P.E. Ricci, and T. Gerats, A Biogeometrical Model for Corolla Fusion in Asclepiad Flowers, Atlantis Transactions in Geometry, Atlantis Press, Paris, in Modeling in Mathematics: Proceedings of the Second Tbilisi-Salerno Workshop on Modeling in Mathematics, Vol. 2, 2017, pp. 83-106.
[45]
J. Gielis, D. Caratelli, Y. Fougerolle, P.E. Ricci, I. Tavkelidze, and T. Gerats, Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems, PLOS One, Vol. 7, No. 9, 2012, pp. e29324. DOI: https://doi.org/10.1371/journal.pone.0029324
[46]
J. Gielis, D. Caratelli, P. Shi, and P.E. Ricci, A Note on Spirals and Curvature, Growth and Form, Vol. 1, No. 1, 2020, pp. 1-8. DOI: https://doi.org/10.2991/gaf.k.200124.001
[47]
J. Gielis, S. Haesen, and L. Verstraelen, Universal Natural Shapes: From the Super Eggs of Piet Hein to the Cosmic Egg of Georges Lemaître, Kragujevac Journal of Mathematics, Vol. 28, 2005, pp. 57-68.
[48]
J. Gielis, P. Natalini, and P.E. Ricci, A Note About Generalized Forms of the Gielis Formula, Atlantis Transactions in Geometry, Atlantis Press, Paris, in Modeling in Mathematics: Proceedings of the Second Tbilisi-Salerno Workshop on Modeling in Mathematics, Vol. 2, 2017, pp. 107-116.
[49]
J. Gielis, P.E. Ricci, and I. Tavkhelidze, The Möbius Phenomenon in Generalized Möbius-Listing Surfaces and Bodies, and Arnold’s Cat Phenomenon, Tbilisi Mathematical Journal, 2021.
[50]
J. Gielis, R. Verhulst, D. Caratelli, P.E. Ricci, and I. Tavkhelidze, On Means, Polynomials and Special Functions, The Teaching of Mathematics, Vol. 17, No. 1, 2014, pp. 1-20.
[51]
I. Gouzévitch and D. Gouzévitch, Gabriel Lamé à Saint Pétersbourg (1820–1831), Bulletin de la Sabix - Société des Amis de la Bibliothèque et de l’Histoire de l’École Polytechnique, Vol. 44, 2009, pp. 20-43. DOI: https://doi.org/10.4000/sabix.624
[52]
A.W. Graham, L.R. Spitler, D.A. Forbes, T. Lisker, B. Moore, and J. Janz, LEDA 074886: A Remarkable Rectangular-Looking Galaxy, The Astrophysical Journal, Vol. 750, No. 2, 2012, pp. 121.
[53]
R. Grammel, Eine Verallgemeinerung der Kreis- und Hyper-belfunktionen, Ingenieur-Archiv, Vol. 16, No. 3-4, 1948, pp. 188-200.
[54]
M. Guidetti, D. Caratelli, and T.J. Royston, Converging Super-Elliptic Torsional Shear Waves in a Bounded Transverse Isotropic Viscoelastic Material with Nonhomogeneous Outer Boundary, The Journal of the Acoustical Society of America, Vol. 146, No. 5, 2019, pp. EL451. DOI: https://doi.org/10.1121/1.5134657
[55]
R. Guitart, Les Coordonnées Curvilignes de Gabriel Lamé, Réprésentations des Situation Physiques et Nouveaux Objets Mathématiques, Bulletin de la Sabix - Société des Amis de la Bibliothèque et de l’Histoire de l’École Polytechnique, Vol. 44, 2009, pp. 119-129. DOI: https://doi.org/10.4000/sabix.686
[56]
S. Haesen, A.I. Nistor, and L. Verstraelen, On Growth and Form and Geometry I, Kragujevac Journal of Mathematics, Vol. 36, No. 1, 2012, pp. 5-25.
[57]
P.R. Halmos, Finite-Dimensional Vector Spaces, Springer-Verlag, Berlin - New York, 1974.
[58]
K.B. Howell, Principles of Fourier Analysis, CRC Press, Boca Raton (FL), 2001.
[59]
W. Huang, Y. Li, K.J. Niklas, J. Gielis, Y. Ding, L. Cao, and P. Shi, A Superellipse With Deformation and Its Application in Describing the Cross-Sectional Shapes of a Square Bamboo, Symmetry, Vol. 12, No. 12, 2020, pp. 2073. DOI: https://doi.org/10.3390/sym12122073
[60]
A. Jeffrey, Mathematics for Engineers and Scientists, 6th Edition, CRC Press, Boca Raton (FL), 2004.
[61]
V.F. Kagan, Riemann’s Geometric Ideas, The American Mathematical Monthly, Vol. 112, No. 1, 2005, pp. 79-86.
[62]
K. Knopp, Infinite Sequences and Series, Dover Publications, New York (NY), 1956.
[63]
M. Koiso and B. Palmer, Equilibria for Anisotropic Surface Energies and the Gielis Formula, Forma, Vol. 23, No. 1, 2008, pp. 1-8.
[64]
M. Koiso and B. Palmer, Rolling Construction for Anisotropic Delaunay Surfaces, Pacific Journal of Mathematics, Vol. 234, No. 2, 2008, pp. 345-378. DOI: https://doi.org/10.2140/pjm.2008.234.345
[65]
G. Krall, Meccanica Tecnica Delle Vibrazioni, Vol. II, Veschi, Rome, 1970.
[66]
G. Lamé, Examen des Différentes Méthodes Employées pour Résoudre les Problèmes de Géométrie, Mme. Ve. Courcier, Imprimeur-Libraire, 1818.
[67]
K. Lenjou, Krommen en Oppervlakken van Lamé en Gielis: Van de Formule van Pythagoras tot de Superformule, University of Louvain, Department of Mathematics, 2005.
[68]
S. Lin, L. Zhang, G.V.P. Reddy, C. Hui, J. Gielis, Y. Ding, and P. Shi, A Geometrical Model for Testing Bilateral Symmetry of Bamboo Leaf With a Simplified Gielis Equation, Ecology and Evolution, Vol. 6, No. 19, 2016, pp. 6798-6806. DOI: https://doi.org/10.1002/ece3.2407
[69]
É. Lucas, Recherche sur Plusieurs Ouvrages de Léonarde de Pise, Bullettino di Bibliografia e di Storia Delle Scienze Matematiche e Fisiche, Imprimerie des Sciences Mathématiques et Physiques, Rome, Vol. 10, March April May 1877 1877.
[70]
Robert J. Marks II, Handbook of Fourier Analysis & Its Applications, Oxford University Press, 2009. DOI: https://doi.org/10.1093/oso/9780195335927.001.0001
[71]
J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, Chapman and Hall CRC Press, New York (NY) Boca Raton (FL), 2003.
[72]
M. Matsuura, Gielis’ Superformula and Regular Polygons, Journal of Geometry, Vol. 106, No. 2, 2015, pp. 383-403. DOI: https://doi.org/10.1007/s00022-015-0269-z
[73]
P. Natalini, R. Patrizi, and P.E. Ricci, Heat Problems for a Starlike Shaped Plate, Applied Mathematics and Computation, Vol. 215, No. 2, 2009, pp. 495-502. DOI: https://doi.org/10.1016/j.amc.2009.05.024
[74]
P. Natalini and P.E. Ricci, The Laplacian in Stretched Polar Coordinates and Applications, Lecture Notes of TICMI, Vol. 10, 2009, pp. 7-19.
[75]
A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, 1988.
[76]
P.E. Ricci, Alcune Osservazioni Sulle Potenze Delle Matrici del Secondo Ordine e Sui Polinomi di Tchebycheff di Seconda Specie, Atti della Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche e Naturali, Vol. 109, 1975, pp. 405-410.
[77]
P.E. Ricci, Complex Spirals and Pseudo-Chebyshev Polynomials of Fractional Degree, Symmetry, Vol. 10, No. 12, 2018, pp. 671. DOI: https://doi.org/10.3390/sym10120671
[78]
P.E. Ricci, A Note on the D-Trigonometry and the Relevant D-Fourier Expansions, Growth and Form, Vol. 2, No. 1, 2021, pp. 11-16. DOI: https://doi.org/10.2991/gaf.k.201210.002
[79]
P.E. Ricci, A Note on Golden Ratio and Higher Order Fibonacci Sequences, Turkish Journal of Analysis and Number Theory, Vol. 8, No. 1, 2020, pp. 1-5. DOI: https://doi.org/10.12691/tjant-8-1-1
[80]
P.E. Ricci, I Polinomi di Tchebycheff in Più Variabili, Rendiconti di Matematica, Vol. 11, 1978, pp. 295-327.
[81]
P.E. Ricci, Sulle Potenze di Una Matrice, Rendiconti di Matematica, Vol. 9, 1976, pp. 179-194.
[82]
P.E. Ricci, A Survey on Pseudo-Chebyshev Functions, 4Open, Vol. 3, No. 2, 2020. DOI: https://doi.org/10.1051/fopen/2020001
[83]
F. Riesz, Untersuchungen über Systeme Integrierbarer Funktionen, Mathematische Annalen, Vol. 69, No. 4, 1910, pp. 449-497.
[84]
T.J. Rivlin, The Chebyshev Polynomials, John Wiley & Sons, New York, 1974.
[85]
R. Rodríguez-Oliveros and J.A. Sánchez-Gil, Gold Nanostars as Thermoplasmonic Nanoparticles for Optical Heating, Optics Express, Vol. 20, No. 1, 2012, pp. 621-626. DOI: https://doi.org/10.1364/OE.20.000621
[86]
W. Rudin, Functional Analysis, 2nd Edition, McGraw-Hill, New York (NY), 1991.
[87]
P. Shi, J.G. Huang, C. Hui, H.D. Grissino-Mayer, J.C. Tardif, L.H. Zhai, F.S. Wang, and B.L. Li, Capturing Spiral Radial Growth of Conifers Using the Superellipse to Model Tree-Ring Geometric Shape, Frontiers in Plant Science, Vol. 6, 2015, pp. 856. DOI: https://doi.org/10.3389/fpls.2015.00856
[88]
P. Shi, D.A. Ratkowsky, and J. Gielis, The Generalized Gielis Geometric Equation and Its Application, Symmetry, Vol. 12, No. 4, 2020, pp. 645. DOI: https://doi.org/10.3390/sym12040645
[89]
P. Shi, D.A. Ratkowsky, Y. Li, L. Zhang, S. Lin, and J. Gielis, A General Leaf Area Geometric Formula Exists for Plants – Evidence from the Simplified Gielis Equation, Forests, Vol. 9, No. 11, 2018, pp. 714. DOI: https://doi.org/10.3390/f9110714
[90]
L. Spíchal, Gielisova Transformace Logaritmické Spirály, Pokroky Matematiky, Fyziky a Astronomie, Vol. 65, No. 2, 2020, pp. 76-89.
[91]
L. Spíchal, Jednotková Parabola, Zlatý Řez a Parabolickeé π, 2021.
[92]
L. Spíchal, Superelipsa a Superformule, Matematika-Fyzika-Informatika, Vol. 29, No. 1, 2020, pp. 54-69.
[93]
H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions (Mathematics and Its Applications), Halsted Press / Ellis Horwood, Chichester, 1984.
[94]
C. Struck, Natural Orbit Approximations in Single Power-Law Potentials, Monthly Notices of the Royal Astronomical Society, Vol. 446, No. 3, 2015, pp. 3139-3149. DOI: https://doi.org/10.1093/mnras/stu2342
[95]
J. Swinton and E. Ochu, MSI Turing’s Sunflower Consortium. Novel Fibonacci and Non-Fibonacci Structure in the Sunflower: Results of a Citizen Science Experiment, Royal Society Open Science, Vol. 3, No. 5, 2016, pp. 160091. DOI: https://doi.org/10.1098/rsos.160091
[96]
I. Tavkhelidze, D. Caratelli, J. Gielis, P.E. Ricci, M. Rogava, and M. Transirico, On a Geometric Model of Bodies With “Complex” Configuration and Some Movements, Atlantis Transactions in Geometry, Atlantis Press, Paris, in Modeling in Mathematics: Proceedings of the Second Tbilisi-Salerno Workshop on Modeling in Mathematics, Vol. 2, 2017, pp. 129-158.
[97]
I. Tavkhelidze, C. Cassisa, J. Gielis, and P.E. Ricci, About “Bulky” Links, Generated by Generalized Möbius Listing’s Bodies GML 3n, Rendiconti Lincei – Matematica e Applicazioni, Vol. 24, No. 1, 2013, pp. 11-38.
[98]
R. Thom, Paraboles et Catastrophes: Entretiens sur les Mathématiques, la Science et la Philosophie, Flammarion, 1983.
[99]
A.C. Thompson, Minkowski Geometry, Cambridge University Press, 1996. DOI: https://doi.org/10.1017/CBO9781107325845
[100]
G.P. Tolstov, Fourier Series (reprint), Dover Publications, New York (NY), 2012.
[101]
L.N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (PA), 2013.
[102]
L. Verstraelen, A Concise Mini History of Geometry, Kragujevac Journal of Mathematics, Vol. 38, No. 1, 2014, pp. 5-21.
[103]
L. Verstraelen, Curves and Surfaces of Finite Chen Type, Geometry and Topology of Submanifolds, III, World Scientific, 1991, pp. 304-311.
[104]
Q. Wei, C. Jiao, L. Guo, Y. Ding, J. Cao, J. Feng, X. Dong, L. Mao, H. Sun, F. Yu, G. Yang, P. Shi, G. Ren, and Z. Fei, Exploring Key Cellular Processes and Candidate Genes Regulating the Primary Thickening Growth of Moso Underground Shoots, New Phytologist, Vol. 214, No. 1, 2016, pp. 81-96. DOI: https://doi.org/10.1111/nph.14284
[105]
A. Weil and S.S. Chern, Geometer and Friend, Springer Verlag, 1978.
[106]
H.J. Wilcox and D.L. Myers, An Introduction to Lebesgue Integration and Fourier Series (reprint), Dover Publications, New York (NY), 1994.